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Abstract—The rapid growth of cloud services has brought a
significant increase in inter-datacenter traffic. To transfer data
among geographically distributed datacenters, cloud providers
need to purchase bandwidth from ISPs. The data transferring
cost has become one of the major expenses for cloud providers.
Therefore, it is essential for a cloud provider to carefully allocate
inter-datacenter traffic among the ISPs’ links to minimize the
costs. Exiting solutions mainly focus on the situations where
all links adopt the same pricing scheme. However, in practice,
ISPs usually provide multiple pricing schemes for their links due
to market competition, which makes the existing solutions non-
optimal. Thus, a new traffic engineering approach that considers
various pricing schemes is needed. This paper presents COIN,
a new framework for cost-efficient traffic engineering with
various pricing schemes. We propose a partition rounding traffic
engineering algorithm based on linear independence analysis.
The approximation factors and time complexity are formally
analyzed. We further conduct large-scale simulations with real-
world topologies and datasets. Extensive simulation results show
that COIN can save the data transferring cost by up to 54.54%
compared with the state-of-the-art solutions.

Index Terms—Traffic Engineering, Cost-Efficient, Inter-
Datacenter Traffic, Clouds

I. INTRODUCTION

Thanks to the convenience and efficiency of cloud com-
puting, an increasing number of enterprises are moving their
workloads to clouds [1]. Cloud providers usually host their
services and workloads with large-scale datacenters [2]. To
provide better availability and scalability, these datacenters
are usually geographically distributed around the world [3].
In fact, the traffic between these datacenters (namely inter-
datacenter traffic) is essential for world-wide deployed ap-
plications and services [4] [5]. Online applications such as
storage, web search and social networks [6] keep generating
a large volume of inter-datacenter traffic. A recent survey [7]
highlights that nearly 70% of cloud providers have massive
inter-datacenter traffic of more than 330TB per month.

To transfer data across datacenters, cloud providers need
to purchase bandwidth from the Internet Service Provider
(ISP) for the links they use [4]. The rapidly growing
inter-datacenter traffic has led to a heavy cost on cloud
providers [8] [9]. Considering that the ISPs provide multiple
links with different service level agreements (SLA) for data
transferring [10], it is essential for a cloud provider to
carefully allocate inter-datacenter traffic among these inter-

datacenter links, to minimize costs while satisfying each
flow’s QoS demand.

Nowadays, ISPs tend to provide a variety of pricing
schemes for inter-datacenter traffic due to market competition
[10]. In general, existing mainstream pricing schemes are
determined by two components:
• Billable traffic. ISPs sample the inter-datacenter traffic

and measure a few traffic metrics [11]. The inter-
datacenter traffic is billed based on the measured traffic
metrics. For example, with the average (AVG) billable
traffic, the traffic is billed based on the average usage
during the charging period. Similarly, ISPs also supports
the maximum (MAX) billable traffic, the percentile-
based billable traffic [12], etc..

• Billing method. ISPs calculate the traffic cost based
on the billable traffic and its billing methods. Rep-
resentative billing methods include the fixed billing
method [11], the elastic billing method [13] and the
usage-based billing method [12]. For instance, under
the fixed billing method, the cloud provider is allocated
with a committed bandwidth capacity and needs to pay
a fixed price.

In practice, ISPs can define their own billable traffic and
billing method. Therefore, the traffic pricing schemes in real-
production environment are diverse and flexible, which will
be discussed in detail in Section III-B.

Several traffic engineering solutions [4] [11] [13] [14]
[15] have been proposed to save inter-datacenter traffic
transferring costs. For example, the authors in [11] present a
scheduling algorithm based on the Committed Information
Rate (CIR), which is a typical fixed billing method with
the AVG billable traffic. The work [13] proposes a pricing
scheme under the elastic billing method and the MAX
billable traffic. Recent works [4] [14] [15] have designed
efficient traffic engineering algorithms for the usage-based
billing method with the percentile-based billable traffic to
minimize costs of inter-datacenter traffic.

However, these existing works usually focus on the sit-
uation where all the inter-datacenter links adopt the same
pricing scheme. They overlook the fact that ISPs usually pro-
vide various pricing schemes due to market competition [10].
That is to say, links configured with different pricing schemes
could coexist between datacenters [16] [17]. According to
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[15], the cost-optimization traffic engineering solution for a
single pricing scheme may be extremely costly for others.

In this paper, we present COIN, a cost-efficient traffic
engineering framework with various pricing schemes. In
fact, the problem is very theoretically and mathematically
complex. Even if we only consider the single pricing scheme
adopting 95th-percentile billable traffic, it has been proven
to be NP-complete [12] [15]. Nevertheless, we will consider
various pricing schemes in our model, including nearly all
current mainstream pricing schemes. It is obvious that our
problem would be much more practical but more difficult
compared with existing works. In general, our contributions
can be highlighted as follows:

1) We comprehensively analyze the current pricing
schemes for real-world inter-datacenter traffic and
present COIN, the traffic engineering framework with
various pricing schemes. To the best of our knowledge,
it is the first traffic engineering framework that can
efficiently deal with various pricing schemes.

2) We also propose an approximation algorithm based
on the cost-efficient framework for three representative
pricing schemes as a case study. Furthermore, we ana-
lyze its time complexity according to Gaussian elimina-
tion and discuss its applicability for different cases.

3) We conduct large-scale simulations using real-world
topologies and datasets to show that COIN can achieve
superior performance, e.g., saving costs by up to 54.54%
compared with the state-of-the-art solutions.

The rest of this paper is organized as follows. Section II
presents the related works of inter-datacenter traffic engineer-
ing and strengthens our motivation. Section III introduces the
preliminaries of our work, describes our traffic engineering
framework, and presents a case study. We propose our
algorithm in Section IV. The simulations are presented in
Section V. We conclude this paper in Section VI.

II. RELATED WORKS

Current online applications incur a significant amount
of inter-datacenter traffic for cloud provides [10], severely
affecting network performance and resulting in huge financial
expenses [4]. Therefore, efficient traffic engineering solutions
are urgently needed. The existing traffic engineering works
can be divided into two main categories: promoting network
performance and saving traffic costs.

To promote network performance, many works are based
on the classical traffic engineering protocol, e.g., Border
Gateway Protocol (BGP), which is used to distribute routing
information among domains [18]. Several works [18] [19]
[20] [21] focus on how to improve an aspect of network
performance, e.g., resiliency, load-balancing, stability, etc.
Secci et al. [18] propose a model that achieves load-balancing
for large inter-domain traffic volumes using game theory.
Compared with BGP, this traffic engineering framework can
achieve a much higher degree of resiliency and stability. The
work [19] focuses on the safety problem associated with
traffic engineering. The authors argue that traditional BGP

is very vulnerable to a variety of attacks due to the lack
of secure means of verifying the authenticity and legitimacy
of traffic. Thus, the authors propose an authorization and
authentication system that addresses the security problems
associated with BGP. In short, BGP-based traffic engineer-
ing solutions are performance-aware but overlook the inter-
datacenter traffic transferring costs charged by ISPs.

Apart from the network performance issues, the finan-
cial expenses charged by ISPs have also drawn attention
from both academia and industries. The classical work [12]
presents the optimal traffic engineering algorithms based on
the AVG/MAX billable traffic and the usage based billing
method. They further consider the situation where ISPs
provide CIR pricing scheme (introduced in Section I), and
provide the optimal traffic engineering based on the greedy
algorithm. Li et al. [10] consider the cost-minimizing traffic
engineering with the AVG billable traffic and the usage based
billing method. In this work, the authors highlight that the
unit costs of links are different since ISPs provide links
with different capacities, and propose an algorithm based on
alternating direction method of multipliers (ADMM) [22].
Entact [23] optimizes linear billable traffic, e.g., AVG and
MAX, while guaranteeing user experience. Overall, the bil-
lable traffic adopted in these works are all linear. Thus,
designing traffic engineering solutions is relatively simple.
Non-linear billable traffic [14], e.g., percentile-based, is not
taken into account due to its difficulty. The NP-completeness
proof of finding optimal traffic engineering solution for 95th-
percentile billable traffic can be found in [12].

Currently, to attract more cloud providers, many ISPs pre-
vent penalties for occasional traffic surges [24] by adopting
the 95th-percentile billable traffic. An increasing number of
works [4] [14] [15] [25] [26] have explored how to save
cost under this pricing scheme. The authors in [4] propose
an online scheduler called TrafficShaper to schedule inter-
datacenter traffic without prior knowledge of traffic arrivals.
The work [25] mainly deals with inter-datacenter traffic
in the Amazon EC2 cloud for video streaming providers.
Singh et al. [14] present CASCARA for the pricing schemes
adopting 95th-percentile billable traffic, which is a cloud
traffic engineering framework to optimize inter-datacenter
traffic allocation. They also prove the performance-awareness
of CASCARA, by showing the bounded impact on links
availability and latency. Based on CASCARA, the work [15]
presents a traffic allocation scheme based on 95th-percentile
billable traffic for practical CDNs considering flow allocation
granularity and deviation of flows. The authors in [26] design
a traffic engineering framework called Pretium, considering
the dynamic prices of 95th-percentile billable traffic for inter-
datacenter links. By implementing in a large WAN, Pretium
reduces up to 80% costs. However, these works only consider
that the inter-datacenter links all adopt the pricing scheme
based on 95th-percentile billable traffic. Thus, how to design
a general traffic engineering framework with various pricing
schemes to save costs is an urgent and practical problem.
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III. PRELIMINARIES

A. Inter-datacenter Model

In this section, we first demonstrate the inter-datacenter
traffic engineering model. Let E = {e1, e2, ..., e|E|} de-
note the set of inter-datacenter links owned by ISPs. Each
link e has a physical bandwidth capacity c(e). We use
F = {f1, f2, ..., f|F |} to denote the set of flows that need
to be transferred over inter-datacenter links. To satisfy the
SLA requirement, we explore a suitable set of links Ef for
each flow f . Similar to [14], we consider traffic engineering
under the discrete-time mode, where a charging period (e.g.,
a month) is divided into T time slots. Each time slot
t ∈ {1, 2, ..., T} has the same duration (e.g., 5 minutes) [14]
[15]. For instance, during a month of charging period, there
are 30× 24× 12 = 8640 5-minute time slots.

Let variables xft,e denote the traffic amount of flow f
through link e at time slot t. kt,e represents the total traffic
amount over link e at time slot t, i.e., kt,e =

∑
f∈F x

f
t,e.

The traffic demand of flow f at time slot t is denoted as dft .
Furthermore, we define the vector ke = (k1,e, k2,e, ..., kT,e),
to record the traffic amount over link e through all the time
slots during a charging period.

B. Pricing Schemes

In practice, there are multiple links between two data-
centers. Each link is configured with one pricing scheme,
determined by the ISP [10]. The set of pricing schemes is
denoted as P . Specifically, a pricing scheme p ∈ P consists
of two elements: billable traffic and billing method. We use
a tuple to represent a pricing scheme, i.e., p = (b,m), where
b denotes the billable traffic and m represents the billing
method. In short, for each link e, ISPs will calculate a value
based on the vector ke as the billable traffic [12], denoted
as b(ke). The billing method m is a function of billable
traffic b(ke). Thus, the cost of link e can be expressed
as p(e) = m(b(ke)). We give the detailed formulation of
billable traffic and billing methods.

Billable traffic mainly includes three kinds: the average
(AVG), the maximum (MAX) and the 95th-percentile [12].

AVG billable traffic calculates the average value of traffic
during a charging period. Let b1(ke) denote the average
billable traffic of link e. It follows:

b1(ke) =

∑
t kt,e
T

,∀e (1)

MAX billable traffic records the maximum traffic within
the charging period, denoted as b2(ke). We have:

b2(ke) ≥ kt,e,∀e, t (2)
95th-percentile billable traffic first requires us to sort the

traffic amount of all time slots in the ascending order. Then,
95th-percentile of the order is taken as the billable traffic. We
use binary variable λt,e to denote whether link e is charged
in time slot t (λt,e = 0) or not (λt,e = 1). Similar to [14],
we have:

b3(ke) = min ze

S.t.

{∑
t λt,e = b

T
20c, ∀e

ze ≥ kt,e − Lλt,e, ∀e, t
(3)

where L is a large integer constant. The first equation means
that free time slots only take 5%. The second equation
calculates the value of 95th-percentile billable traffic, i.e.,
the minimum value of ze.

Billing method describes how the ISPs charge cloud
providers according to billable traffic. Current mainstream
billing methods include the following three kinds.

Fixed billing method means that an ISP provides a commit-
ted bandwidth c1(e) for link e, and the inter-datacenter traffic
amount should not exceed the bandwidth capacity. The ISP
would charge a fixed price s1(e) [12]. We have:{

m1(bi(ke)) = s1(e), ∀e
bi(ke) ≤ c1(e), ∀e

(4)

Elastic billing method provides a bandwidth threshold
c2(e) and charges a fixed price s2(e). If the traffic volume
is beyond the threshold, extra cost will be charged [13] and
the unit price is denoted as q2(e). We use b′i(ke) to represent
the extra traffic on link e for charging, Thus we have:{

m2(bi(ke)) =s2(e) + b′i(ke) · q2(e), ∀e
b′i(ke) = max[0, bi(ke)− c2(e)], ∀e

(5)

Usage based billing method is also a widely adopted
pricing scheme. The cloud provider needs to pay the ISP
according to the unit cost ($ per Mbps) and the billable
traffic (Mbps). We assume the unit cost for link e is q3(e).
It follows:

m3(bi(ke)) = bi(ke) · q3(e),∀e (6)
It is worth noting that the specific charging prices, e.g.,

s1(e) in Eq. (4), s2(e) and q2(e) in Eq. (5), q3(e) in Eq. (6),
are also important parameters determined by ISPs. We will
show that how different charging prices affect the cost results
in our simulations.

We demonstrate the formulation of a pricing scheme as
an example. Specifically, we assume the pricing scheme
is based on the AVG billable traffic and the usage based
billing method, i.e., p = (b1,m3) and p(e) = m3(b1(ke)).
Combining Eqs. (1) and (6), it follows:{

b1(ke) =
∑
t kt,e
T , ∀e

p(e) = b1(ke) · q3(e), ∀e
(7)

In all, ISPs need to first determine billable traffic, and then
charge the billable traffic according to the billing method.
Since we introduce 3 kinds of billable traffic and 3 kinds of
billing methods in this section, there are a total of 9 pricing
schemes. Considering the diversity of pricing schemes, it is
necessary and practical to design a general framework with
various pricing schemes.

C. Cost-Efficient Traffic Engineering Framework

In this section, we give the formulation of the cost-efficient
traffic engineering framework with various pricing schemes.
We focus on the traffic engineering between two datacen-
ters for simplicity, since the traffic between two arbitrary
datacenters is independent of others [13]. We should note
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that our algorithm can be easily extended to deal with traffic
engineering among multiple datacenters. Recall that the set of
inter-datacenter links is denoted as E and the set of pricing
schemes is denoted as P . We use Ep to denote the set of
links with pricing scheme p. The traffic engineering decision
is determined by calculating xft,e, meaning how much traffic
should flow f allocate to link e at time slot t.

When allocating traffic, we should consider the following
constraints similar to [27]: 1) Link Capacity Constraint: The
total traffic amount on every link at any time slot should not
exceed its capacity. 2) Traffic Demand Constraint: The traffic
demand of every flow should be satisfied at any time slot. In
addition, to meet the SLA requirement, flow f can only be
allocated to the links belonging Ef . We formulate the traffic
engineering framework as follows:

min
∑
e∈E

p(e)

S.t.



kt,e =
∑
f∈F x

f
t,e, ∀e, t

kt,e ≤ c(e), ∀e, t∑
e∈Ef x

f
t,e = dft , ∀f, t

p(e) = m(b(ke)), ∀e ∈ Ep
xft,e ≥ 0, ∀e, f, t

(8)

The first set of equations calculates the traffic volume on
link e at time slot t. The second set of inequalities represents
the link capacity constraint, that on every link e at any time
slot t, the traffic volume kt,e should not exceed the capacity
c(e). The third set of equations describes the traffic demand
constraint for any inter-datacenter flow f at any time slot t.
In this equation, flow f can only be allocated to link e ∈ Ef ,
due to the SLA requirement. The fourth set of equations
expresses the cost of link e under pricing scheme p. Our
objective is to minimize the total cost of all links charged
by the ISP, i.e.,

∑
e∈E p(e). Based on the above framework,

we can combine it with specific pricing schemes to acquire
a cost-efficient traffic engineering solution.

D. A Case Study

Pricing
Schemes Billable Traffic Billing Method

p1 AVG (b1) fixed (m1)
p2 MAX (b2) elastic (m2)
p3 95th-percentile (b3) usage based (m3)

TABLE I: Representative Pricing Schemes

In this section, we will show how to use the general traffic
engineering framework with specific pricing schemes by a
case study. In this case, we choose three representative and
widely adopted pricing schemes [11] [13] [14], as shown in
Table I. The first pricing scheme p1 consists of the AVG bil-
lable traffic and the fixed billing method. The second pricing
scheme p2 is determined by the MAX billable traffic and the
elastic billing method. The third pricing scheme is based on
the 95th-percentile billable traffic and the usage based billing
method. The pricing schemes set P = {p1, p2, p3}. For each

flow f , we need to determine how to allocate the traffic to
the links configured with three pricing schemes to minimize
the total cost. Combining the general framework in Eq. (8)
and three pricing schemes shown in Section III-B, we give
the following formulation:

min
∑
e∈Ep1

p1(e) +
∑
e∈Ep2

p2(e) +
∑
e∈Ep3

p3(e)

S.t.



kt,e =
∑
f∈F x

f
t,e, ∀e, t

kt,e ≤ c(e), ∀e, t∑
e∈Ef x

f
t,e = dft , ∀t, f

b1(ke) =
∑
t kt,e
T , ∀e ∈ Ep1

b1(ke) ≤ c1(e), ∀e ∈ Ep1
p1(e) = s1(e), ∀e ∈ Ep1
b2(ke) ≥ kt,e, ∀e ∈ Ep2 , t
b′2(ke) = max[0, b2(ke)− c2(e)], ∀e ∈ Ep2
p2(e) = s2(e) + b′2(ke) · q2(e), ∀e ∈ Ep2∑
t λt,e = b

T
20c, ∀e ∈ Ep3

ze ≥ kt,e −Mλt,e, ∀e ∈ Ep3 , t
b3(ke) = min ze, ∀e ∈ Ep3
p3(e) = b3(ke) · q3(e), ∀e ∈ Ep3
λt,e ∈ {0, 1}, ∀e ∈ Ep3 , t
xft,e ≥ 0, ∀e, f, t

(9)

In this formulation, the former three equations/inequalities
are the same as those in Eq. (8). The fourth to the sixth
equations/inequalities calculate the cost according to pric-
ing scheme p1, i.e., Eqs. (1) and (4). The seventh to the
ninth equations/inequalities denote the pricing scheme p2,
i.e., Eqs. (2) and (5). The tenth to the thirteenth equa-
tions/inequalities imply the pricing scheme p3, i.e., Eqs. (3)
and (6). Our objective is to minimize the cost of traffic
under the three various pricing schemes, i.e.,

∑
e∈Ep1

p(e)+∑
e∈Ep2

p(e) +
∑
e∈Ep3

p(e).
Since the formulation consists of binary variables, it is a

0-1 integer programming problem [28], which is computa-
tionally hard to solve. Moreover, according to [12], finding
the optimal solution for the 95th-percentile pricing scheme
is NP-complete. Thus, how to design an efficient algorithm
for Eq. (9) is a tricky problem.

IV. ALGORITHM DESIGN

A. Algorithm Description

As shown in our case study defined in Eq. (9), for
each link e ∈ Ep3 , the sum of binary variables is b T20c,
i.e.,

∑
t λt,e = b T20c,∀e ∈ Ep3 . The classical solution

for 0-1 integer programming problem, e.g., the randomized
rounding algorithm [29], only works for the situation where
b T20c = 1. However, we should note that b T20c > 1 in the
most of practical cases, which means the infeasibility of the
classical randomized rounding algorithm for our problem.
Thus, we present a new approximation algorithm, called
Partition Rounding-based Traffic Engineering (PTE), to solve
the problem.



5

Algorithm 1 PTE: Partition Rounding-based Traffic Engi-
neering

1: Step1: Solve the relaxed formulation
2: Construct a linear program by replacing the integral

constraints λt,e ∈ {0, 1} with λt,e ∈ [0, 1]

3: Obtain the optimal solutions {λ̂t,e} and {x̂ft,e}
4: Step2: Acquire a set of feasible solution
5: for each e ∈ Ep3 do
6: Create partitions and construct a set of linear indeter-

minate equations according to Eq. (10)
7: Solve the set of linear indeterminate equations and

obtain a set of feasible solutions P̂ (C)
8: Choose one partition C with probability of P̂ (C)
9: Derive integral solution {λ̃t,e} by setting all the vari-

ables within the chosen partition to one, and others are
rounded to zero

10: Return {λ̃t,e} and {x̂ft,e}

Our algorithm consists of two main steps and is formally
described in Alg. 1. In the first step, we construct the 0-
1 integer programming according to Eq. (9) and relax the
binary variables λ ∈ {0, 1} into linear ones, i.e., λ ∈ [0, 1].
Then we apply a linear program solver (e.g., CPLEX [30]) to
acquire the fractional solutions, denoted as {x̂ft,e} and {λ̂t,e}.

In the second step, we determine how to choose free time
slots for each link e ∈ Ep3 , i.e., obtaining integer solutions
{λ̃t,e}. Note that, the following process is executed for each
link e ∈ Ep3 independently, and we use N to represent
b T20c for simplicity. The key idea is to create partitions for
variables and calculate the probability of choosing each parti-
tion. Specifically, we first divide these variables into several
partitions and each partition contains N distinct variables.
Obviously, there are

(
T
N

)
different partitions. We use variable

P (C) to denote the probability that the partition C is chosen.
Then, we construct the set of linear indeterminate equations
as follows: {∑

C P (C) = 1∑
C:λt,e∈C P (C) = λ̂t,e, ∀t

(10)

It contains T + 1 equations and
(
T
N

)
variables. Note that,

since
(
T
N

)
= O(Tmin{N,T−N}), the number of variables

could be very huge. To this end, we will show a method
to reduce the number of variables from

(
T
N

)
down to T

based on the linear independence analysis, and prove the
time complexity of solving Eq. (10) is only O(T 3) based on
Gaussian elimination (see Section IV-C for details). Then, the
set of equations can be easily solved by an equation solver
(e.g., SymPy [31]) to acquire a set of feasible solutions, i.e.,
P̂ (C). Similar to the randomized rounding algorithm, we
choose one partition C with the probability of P̂ (C). Note
that, all the variables in the chosen partition will be rounded
to one, and others will be rounded to zero. In this way, we
can acquire integral solutions, i.e., {λ̃t,e}.

B. Performance Analysis
We first prove the correctness of our PTE algorithm.
Theorem 1: The proposed PTE algorithm can guarantee

that for each link e ∈ Ep3 , the free time slots exactly take 5%
of the whole charging period, i.e., the constraint

∑
t λt,e =

b T20c in Eq. (9) is satisfied.
Proof: In the second step of PTE, for each link e ∈ Ep3 ,

we only choose one partition according to the solution of
Eq. (10), and all the variables in the partition will be rounded
to one, while others are rounded to zero. Considering that
each partition contains N variables, the constraint

∑
t λt,e =

b T20c = N is satisfied. It means that for each link e ∈ Ep3 ,
the free time slots take exactly 5% of all time slots.

We then give two famous lemmas for probability analysis.
Lemma 2: (Chernoff Bound [32]) Given n independent

variables: x1, x2, ..., xn, where ∀xi ∈ [0, 1]. Let µ =

E[
∑n
i=1 xi]. Then, we have Pr[

∑n
i=1 xi ≥ (1+ε)µ] ≤ e

−ε2µ
2+ε

and Pr[
∑n
i=1 xi ≤ (1 − ε)µ] ≤ e

−ε2µ
2 , where ε is an

arbitrarily positive value.
Lemma 3: (Union Bound [33]) Given an accountable set

of n events: A1, A2, ...An, each event Ai happens with prob-
ability Pr(Ai). Then, Pr(A1∪A2∪...∪An) ≤

∑n
i=1 Pr(Ai).

Next, we prove the following lemma and analyze the
approximation factor.

Lemma 4: The proposed algorithm can guarantee
E[λt,e] = λ̂t,e, ∀e ∈ Ep3 , t.

Proof: According to Eq. (10), for each link e ∈ Ep3 and
each time slot t, variable λt,e corresponds to an equation:∑

C:λt,e∈C

P (C) = λ̂t,e (11)

We choose the partition C with the probability of P̂ (C)
and all the variables in the chosen partition will be rounded
to one. Assuming that λt,e is in partitions C1, C2, ..., Ck,
according to Eq. (11), we have

∑k
i=1 P (Ci) = λ̂t,e. The

probability of choosing the partitions containing λt,e is
exactly λ̂t,e. Therefore, we have E[λt,e] = 1 × λ̂t,e + 0 ×
(1− λ̂t,e) = λ̂t,e.

Theorem 5: PTE acquires a feasible solution with an
approximation factor of O(log |F |), where |F | is the number
of flows.

Proof: As discussed in Lemma 4, all the binary variables
can keep the expectation values, i.e., E[λt,e] = λ̂t,e,∀e ∈
Ep3 . We define ze = min[kt,e−Mλt,e],∀e ∈ Ep3 . It follows
ẑe = min[kt,e−Mλ̂t,e],∀e ∈ Ep3 . For each link e ∈ Ep3 , we
have E[ze] = E[min[kt,e −Mλt,e]] = min[kt,e −Mλ̂t,e] =
ẑe. Similarly, we have E[b3(ke)] = E[min ze] = min ẑe =
b̂3(ke) and E[p3(e)] = E[b3(ke)q3(e)] = b̂3(ke)qe(e) =
p̂3(e), for each link e ∈ Ep3 .

We define the constant pmax = max{p3(e),∀e ∈ Ep3}.
According to Lemma 2, we have:

Pr[
p3(e)

pmax
≥ (1 + ε)E[

p3(e)

pmax
]] ≤ e

−ε2µ
2+ε

⇒Pr[
p3(e)

p̂3(e)
≥ (1 + ε)] ≤ e

−ε2µ
2+ε ≤ 1

|F |2
(12)
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Here µ = p3(e)
pmax

. We can know that 1
|F |2 → 0 when the

number of flows grows. The solution to Eq. (12) follows:

ε ≥
2 log |F |+

√
4 log2 |F |+ 16µ log |F |

2µ
,

⇒ε ≥ 2 log |F |
µ

+ 2 = O(log |F |), |F | ≥ 2 (13)

Thus, we have:

pe < O(log |F |)p̂3(e),∀e ∈ Ep3 (14)

Let |Ep3 | denote the number of links e ∈ Ep3 . Combining
Lemma 3, i.e., Union Bound, it follows:

Pr[
⋃

e∈Ep3

p3(e)

p̂3(e)
≥ (1 + ε)]

≤
∑
e∈Ep3

Pr[
p3(e)

p̂3(e)
≥ (1 + ε)] ≤ |Ep3 |

|F |2
(15)

When the number of flows grows, |Ep3 ||F |2 → 0. It concludes
that the total costs of link e ∈ Ep3 will not exceed the optimal
results by a factor of O(log |F |) with a high probability.

Since the value of variables x̂ft,e derived by solving the LP,
i.e., the first step of PTE, will not be affected by partition
rounding in the second step of PTE, it means for all time
slots t and all link e, the value of k̂t,e =

∑
f x̂

f
t,e derived by

solving the LP remains the same. Thus, the billable traffic
will not be changed, and after rounding procedure, we still
have p1(e) = p̂1(e),∀e ∈ Ep1 and p2(e) = p̂2(e),∀e ∈ Ep2 ,
where p1(e) and p2(e) represent the values derived by PTE
and p̂1(e) and p̂2(e) denote the values derived by solving
the LP. Therefore, the total cost denoted by P derived by the
PTE algorithm follows:
P =

∑
e∈Ep1

p1(e) +
∑
e∈Ep2

p2(e) +
∑
e∈Ep3

p3(e)

<
∑
e∈Ep1

p̂1(e) +
∑
e∈Ep2

p̂2(e) +
∑
e∈Ep3

O(log |F |)p̂3(e)

(16)
Compared with the optimal solution P̂ by solving the LP,

we finally have:
P
P̂

=

∑
i=1,2

∑
e∈Epi

pi(e) +
∑
e∈Ep3

O(log |F |)p̂3(e)∑
i=1,2,3

∑
e∈Epi

p̂i(e)

= O(log |F |) (17)
It concludes that our algorithm can achieve the approxi-

mation factor of O(log |F |) for the solution.

C. Analysis on Linear Indeterminate Equations

Compared with the classical randomized rounding solu-
tion, our proposed algorithm contains one more step: solving
the set of linear indeterminate equations in Eq. (10). In this
section, we first prove that Eq. (10) is solvable. Then, we
analyze the time complexity of solving Eq. (10). Recall that
the original formulation requires

∑
t λt,e = N, ∀e ∈ Ep3 ,

where N = b T20c. There are T variables for each e ∈ Ep3 .
Theorem 6: The set of linear indeterminate equations in

Eq. (10) is solvable.

Proof: Even though we have T+1 equations in Eq. (10),
we first show that there are actually T linear indepen-
dent equations. Since each partition C contains N different
variables, every P (C) will appear in exact N equations
in Eq. (10) besides

∑
C P (C) = 1. Thus, if we add

all the equations except
∑
C P (C) = 1, we can acquire

N ·
∑
C P (C) =

∑
t λ̂t,e = N . This is equivalent to∑

C P (C) = 1. Thus, this equation is actually redundant.
Then, since T ≤

(
T
N

)
, the number of equations is not more

than that of variables. According to [34], the set of linear
indeterminate equations is solvable.

In our problem setting, during a month, we consider a five-
minute interval. Therefore, we have 30 × 24 × 12 = 8640
time intervals, i.e., T = 8640, and N = b T20c = 432.
It brings us a very intractable problem with a very huge
number of variables, i.e.,

(
8640
432

)
= O(10743), far beyond

the capacity of modern computers. In fact, we can use the
Gaussian elimination algorithm to minimize the difficulty and
substantially decrease the time complexity.

Theorem 7: The time complexity of solving the set of linear
indeterminate equations in Eq. (10) is O(T 3).

Proof: We discuss this theorem according to the value
of N . If N = T − 1, we can directly use the Gaussian
elimination algorithm and the time complexity is O(T 3) [35].
Due to limited space, we omit the detailed analysis in this
paper. Otherwise, we only need to create a part of P (C)
for calculation. The rest of P (C) are set to 0 directly.
Specifically, in order to avoid linear dependence, we create
partitions by the following steps. We assume for a link
e ∈ Ep3 , C = {λa1,e, λa2,e, ..., λaN ,e}, and we always have
a1 < a2 < ... < aN . The initial setting is a1 = 1, a2 =
2, ..., aN = N . We consider the number (a1a2...aN ) under
base-T+1 positional notation. Then, we gradually add one to
the last number aN until there are T partitions. Therefore,
the new set of linear equations only contains T variables.
The time complexity of solving equations is still O(T 3).
Furthermore, since all the coefficients in Eq. (10) are zero
or one, the calculation would be much simpler compared
with general sets of linear indeterminate equations.
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Fig. 1: The Running Time of Solving the Linear Indeterminate
Equations for Different Charging Periods

To enhance persuasiveness, we conduct experiments to
evaluate the running time of solving Eq. (10) for different
charging periods. For instance, if the charging period is one
month, the set of equations has 30×24×12 = 8640 variables.
The experiments are conducted with an i7-11800H CPU and
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32GB RAM. The equation solver is SymPy and the results
are shown in Fig. 1.

The results show that the running time is negligible com-
pared with the charging period. For instance, when the charg-
ing period is one week, the duration of solving equations
only takes 3.38s. The evaluation results fully demonstrate
that solving the set of equations is applicable in practice.
We should note that, with an advanced algorithm for linear
equations [36] or a high-performance computer, the running
time could be reduced substantially.

D. Discussion on Case Study

In our case study defined in Section III-D, we only
consider three pricing schemes. However, we should note
that, our algorithm can still work in other scenarios.

Scenario 1: There does not exist any pricing scheme
adopting 95th-percentile billable traffic. Then the case study
becomes a linear programming problem. We can use a
standard LP solver to acquire the optimal solutions directly,
i.e., the second step of PTE will not be executed.

Scenario 2: There are multiple pricing schemes adopting
95th-percentile billable traffic. For instance, there exist two
pricing schemes both adopting 95th-percentile billable traffic,
one of which uses the elastic billing method and the other
of which uses the fixed billing method. We can use our
algorithm to first acquire a set of optimal but fractional
solutions, i.e., λ̂t,e. For each link with different pricing
scheme adopting 95th-percentile billable traffic, we execute
the second step of PTE independently. Finally, we acquire a
set of feasible solutions with bounded approximation factors.

Scenario 3: There exist other kinds of percentile based bil-
lable traffic. In the work [4], authors consider qth-percentile
billable traffic where q ranges from 50-100. In this case, we
only need to change the equation in Eq. (9), i.e.,

∑
t λt,e =

b T20c,∀e into
∑
t λt,e = b(1 − q

100 )T c,∀e. Then, we can
similarly use the PTE algorithm to derive a solution.

These discussions fully demonstrate the applicability of
our algorithm. Under different scenarios, we can easily mod-
ify our algorithm to acquire cost-efficient traffic engineering
solutions with bounded approximation factors.

V. PERFORMANCE EVALUATION

A. Simulation Settings

1) Benchmarks: We use the following three algorithms
as benchmarks: (1) Load-balancing (LB) [37] is a widely
adopted traffic allocation scheme. It always chooses the link
with the least load ratio for flows. (2) CASCARA [14] is
the latest research on inter-datacenter traffic with the 95th-
percentile billable traffic and the usage based billing method.
It directly computes the formulation defined in Eqs. (3) and
(6) to acquire the cost-effective allocation results. (3) Global
Integral Assignment (GIA) [38] schedules flow through an
integral assignment manner, i.e., assigning the entire flow to
the same link greedily. In our cases, it greedily schedules
flows to the least cost link.

2) Flow Datasets: We use the power law for the flow-
size distribution, where 20% of all flows account for 80% of
traffic volume [39]. Specifically, we set: (1) Dataset I simu-
lates the traffic from datacenters of a search engine [4]. The
average traffic is set to 1 Mbps. (2) Dataset II simulates the
traffic from datacenters of a video streaming provider [25].
The average traffic is set to 1.5Mbps. Along with time, the
traffic volume of flows in two datasets will change randomly.
Specifically, 50% of flows will enlarge traffic size by at most
2 times, and 50% of flows will reduce traffic size by at most
100%. By default, there are 5000 inter-datacenter flows.

3) Charging Prices: To quantitatively describe the finan-
cial expenses, we need to determine the specific cost of
links. We set charging prices according to the Amazon EC2
cloud [10]. In our simulation, we mainly consider two kinds
of charging prices, denoted as A and B. For clear description,
we have listed the parameter settings in Table II. For instance,
with charging prices B, given the fixed billing method, the
cloud provider needs to pay $40 per month for 25Gbps
bandwidth.

Methods Formulations Parameters Prices
A B

Fixed Eq. (4) s1(e) ($) 30 40
c1(e) (Gbps) 30 25

Elastic Eq. (5)
s2(e) ($) 20 30
c2(e) (Gbps) 20 15
q2(e) ($/Gbps) 5 8

Usage based Eq. (6) q3(e) ($/Gbps) 2 4

TABLE II: Charging Prices of Billing Methods

4) Inter-datacenter Settings: According to [10] [25], we
set the number of links between two datacenters to 3 by
default. The pricing schemes are set to the same as those
in our case study as shown in Table I, i.e., p1, p2, p3. The
physical bandwidth capacity of each link is set to 50Gbps
[10]. We consider one month charging period and the time
interval is set to 5-minute [15] by default.

B. Simulation Results

We run four groups of simulations to check the cost
efficiency of COIN. The first group of experiments shows
the total costs by varying the number of flows between two
datacenters. The results are shown in Figs. 2-3. From the
figures, we can learn that overall, the cost results derived by
four algorithms increase with a growing number of flows.
Specially, with dataset II, when the number of flows exceeds
7 × 103, the cost results remain the same, as shown in Fig.
3. That is because all links are fully loaded, and there is
no space for cost optimization. From the figures, we can
learn that COIN always acquires the lowest costs compared
with other benchmarks. For instance, in Fig. 2(a), given
8 × 103 flows, the cost results of LB, CASCARA, GIA
and COIN are $210.27, $199.43, $183.42 and $137.58 per
month, respectively, with dataset I and charging prices A.
COIN can reduce costs by 34.76%, 31.15% and 25.13%
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Fig. 2: Cost vs. Number of Flows with the Dataset I
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Fig. 3: Cost vs. Number of Flows with the Dataset II
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Fig. 4: Cost of Each Link with the Dataset I
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Fig. 5: Cost of Each Link with the Dataset II

compared with LB, CASCARA and GIA, respectively. The
reason why LB achieves the highest costs is that it does not
take pricing schemes into consideration in traffic allocation.
In addition, since CASCARA only optimizes costs for the
95th-percentile sampling method and usage based billing
method, it does not perform well when there are other
pricing schemes. Since GIA chooses links with the fixed
and the elastic billing methods first, it overlooks the optimal
solutions which adopt the link with usage based billing
method. COIN, however, will generally consider all links
with different pricing schemes to calculate the cost-optimal
traffic engineering solutions. Thus, the cost results derived
by COIN are always the lowest among all the algorithms.
Moreover, we can learn from Fig. 3(b), given the dataset
II and charging prices B, COIN can reduce the cost by
24.55%, 21.42% and 11.44% on average, compared with LB,
CASCARA and GIA, respectively.

The second group of simulations shows the specific cost
of each link given 5 × 103 flows. The results are shown in
Figs. 4-5. From the figures, we can see that since link 1 is
configured with pricing scheme p1 adopting the fixed billing
method, the cost results of four algorithms are always the
same. For instance, in Fig. 4(a), the costs of link 1 are all
$30 per month, with charging prices A. It is worth noting
that COIN cannot assure that all links achieve the lowest
cost. For instance, in Figs. 5(a)-5(b), the costs of link 3
derived by COIN are slightly higher than those of GIA.
This is because GIA will greedily allocate traffic to link 2
with elastic billing method first, rather than link 3 with the
usage based billing method. However, on average, COIN still
achieves the lowest costs. For instance, in Fig. 5(b), given
dataset II and charging prices B, the average costs derived
by LB, CASCARA, GIA and COIN are $115.41, $111.05,
$98.88 and $78.50 per month, respectively. COIN reduces
costs by 31.98%, 29.27% and 20.61% compared with LB,

CASCARA and GIA, respectively,
To further prove that COIN is able to perform well

under different scenarios, the third group of simulations will
compare the cost results derived by four algorithms when
ISP provides different pricing schemes combinations for three
links. In our case study, the settings of Combination Default
(DFT) are three links each with pricing scheme p1, p2, p3,
respectively. We show the cost results when the ISP provides
the following pricing schemes combination for three links.
Combination I: three links are with p1, p1, p2, respectively.
II: three links are with p2, p2, p3, respectively. III: three
links are with p3, p3, p1, respectively. The results are shown
in Figs. 6-7. We can observe that COIN always achieves
the minimum cost among the four algorithms, no matter
what combination is given. For instance, in Fig. 6(b), when
ISP provides combination I with charging prices B, COIN
can reduce costs by 54.54%, 34.91% and 14.72% compared
with LB, CASCARA and GIA, respectively. It is worth
noting that in Figs. 7(a)-7(b), when given combination II,
we can see that the cost results of CASCARA and GIA are
extremely high. This is because CASCARA is designed for
the 95th-percentile sampling methods, and cannot perform
well when there are two links using the MAX sampling
method. In addition, GIA will greedily allocate traffic to the
links with the elastic billing method, acquiring a very costly
result. Since COIN is designed for the general situation, in
Fig. 7(a), it achieves the minimum cost and reduces costs by
28.65%, 43.26% and 52.34% compared with LB, CASCARA
and GIA, respectively, with dataset II and charging prices
A. Moreover, when ISP provides combination III shown in
Fig. 7(a), COIN reduces costs by 14.38%, 8.96% and 8.33%
compared with LB, CASCARA and GIA, respectively.

In the fourth group of simulations, we will compare the
cost results by varying the number of links. We also consider
all pricing schemes in this simulation, as shown in Table III.
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Fig. 6: Cost of Each Pricing Schemes Combination for Three Links
with the Dataset I
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Fig. 7: Cost of Each Pricing Schemes Combination for Three Links
with the Dataset II
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Fig. 8: Cost vs. Number of Links with the Dataset I
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Fig. 9: Cost vs. Number of Links with the Dataset II

Pricing
Schemes Billable Traffic Billing Method

p4 AVG (b1) elastic (m2)
p5 AVG (b1) usage based (m3)
p6 MAX (b2) fixed (m1)
p7 MAX (b2) usage based (m3)
p8 95th-percentile (b3) fixed (m1)
p9 95th-percentile (b3) elastic (m2)

TABLE III: Pricing Schemes

Specifically, when there are N links, the pricing scheme
of each link is p1, p2, ..., pN , respectively. The performance
comparisons are shown in Figs. 8-9. It is obvious that no
matter how many links are provided, COIN can always
acquire the lowest cost results. For instance, in Fig. 8(a),
when the ISP provides 5 links with charging prices A, the
cost results derived by LB, CASCARA, GIA and COIN
are $120.22, $118.63, $99.03 and $70, respectively. COIN
reduces costs by 41.67%, 40.68% and 29.29% compared with
LB, CASCARA and GIA, respectively. It is worth noting
that when given 8 links or 9 links, GIA can acquire nearly
the same results as COIN does. This is because there exist
multiple links with the fixed billing method, and GIA will
greedily allocate traffic to these links. Meanwhile, these links
are capable of holding all the traffic. Therefore, choosing
the links with the fixed billing method happens to be the
optimal solution. However, we should note that, when given
other number of links, GIA may be much more costly than
COIN does. For instance, in Fig. 9(b) with dataset II and
charging prices B, when there are 6 links, COIN reduces
costs by 49.82%, 47.08% and 27.86% compared with LB,
CASCARA and GIA, respectively. It is also worth noting

that the total costs may decrease when given more links. For
instance, in Figs. 8-9, when there are 4 links, the cost results
are all lower than those of 3 links. This is because the fourth
link is with elastic billing method, and within the bandwidth
threshold, it is cheaper than usage based billing method.

In conclusion, these simulations fully demonstrate that
COIN can reduce inter-datacenter traffic costs by up to
54.54% compared with other benchmarks. Moreover, COIN
is able to work well under different scenarios not only when
given different number of flows (Figs. 2-3), different pricing
schemes combinations (Figs. 4-7), or different number of
links (Figs. 8-9), but also when given different flow datasets
(I and II) or different charging prices (A and B), since COIN
is a general framework, considering all pricing schemes.

VI. CONCLUSION

In this paper, we have presented COIN, a new cost-efficient
traffic engineering framework supporting various pricing
schemes. We also propose an approximation algorithm based
on the cost-efficient framework for three representative pric-
ing schemes as a case study. Furthermore, we analyze its
time complexity and discuss its applicability for different
cases. Extensive simulations have been conducted to show
the superior performance of our proposed algorithm.
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